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A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform
is provided by the E!B drift resulting from a minor radial electric field. This field can be pro-
duced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this
paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be
achieved in such a device. We show that this requires the inclusion of a small plasma current and
vertical magnetic field and identify the desirable reactor regime through free energy considerations.
We then analyze particle orbits in this desirable regime, identifying velocity-space anisotropies in
trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial
electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the per-
pendicular conductivity, current drive, and transport are discussed. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4991510]

I. INTRODUCTION

In a tokamak or stellarator, the rotational transform nec-
essary for toroidal confinement is produced by the twist in
the field lines introduced by the poloidal magnetic field.
However, motion along twisted field lines is not the only
way to mitigate the vertical drifts which occur in a toroidal
magnetic field. For instance, in low-temperature, single-spe-
cies plasmas often of interest in particle physics,1 the minor-
radial electric field due to space-charge results in a poloidal
E!B drift which offsets the vertical drift.2 This magneto-
electric confinement has been demonstrated to confine a cold
electron plasma for thousands of poloidal rotation periods.3

The potential for magneto-electric confinement in fusion
plasmas has been less thoroughly studied. In the early days
of the fusion program, T. H. Stix pointed out that fast ion
losses near the edge of the plasma could produce a narrow,
E!B-rotating region, resulting in confined, D-shaped orbits
when combined with the vertical drifts.4–6 The experiments
that seek to manipulate the electric fields in tokamaks via
electrodes, such as the electric tokamak at UCLA7 and the
TCABR tokamak8 at the University of Sao Paulo, have been
similarly focused on a thin edge region, where they have
often had success in controlling the poloidal flows.9

Recently, it has been proposed to replace the poloidal
magnetic field entirely with a minor radial electric field,10

with the requisite volumetric space charge produced by the
RF wave-driven extraction of positively charged fusion prod-
ucts.11,12 This wave-driven extraction is predicted to be more
efficient than classical RF-driven current drive in toka-
maks.13,14 In addition, such a confinement system could pro-
duce the same rotational transform with less available free
energy, suggesting that turbulent transport and instabilities
could be reduced compared to the tokamak case.

There are many research questions to be addressed in
considering this new confinement scheme, as it is adapted
for a multi-species plasma. These include, but are not limited

to analyses of MHD and kinetic stability, demonstration that
the perpendicular conductivity will allow such a large radial
field to be sustained, estimates of the viscous power dissipa-
tion due to the poloidal flow, and elucidation of the mecha-
nisms for a particle extraction. In this paper, we leave aside
most of these questions for now and only aim to demonstrate
that single-particle confinement and macroscopic force bal-
ance (i.e., balance of the hoop force) can be simultaneously
achieved for a hot fusion plasma.

In the case of cold, single-species, non-neutral plas-
mas,1–3 the hoop force was balanced by the electric field
from image charges in the conducting wall of the chamber.
However, we find (Appendix A) that force balance is likely
far more easily achieved in a fusion plasma with a small
plasma current and vertical field than with an electric field.

We begin Sec. II by establishing constraints on reactor
design, allowing us to identify desirable, macroscopically
force-balancing field configurations based on typical fusion
plasma pressures. Then, in Sec. III, we analyze particle orbits
using constants of motion, showing that we recover known
tokamak results in the limit of no electric field, in particular,
the trapped, banana-shaped orbits of the neoclassical regime.
In Sec. IV, we analyze these orbits in detail for the wave-
driven rotating torus (WDRT) with purely toroidal flux sur-
faces, demonstrating how similarly trapped orbits can result
from the cancellation of E!B motion with thermal motion
along the small poloidal component of the magnetic field.
Interestingly, we find that only electrons are likely to experi-
ence these trapped orbits, due to anisotropy of the trapping
region in velocity space. In Sec. V, we confirm our analytical
results with single-particle simulations and examine the
impact of including relativistic effects and vertical fields
consistent with force balance, which are minor. Finally, in
Sec. VI, we examine the consequences of non-equipotential
flux surfaces in a simple field configuration, showing how
too large an electric field parallel to the magnetic field can
lead to trapped orbits for the entire electron population. The
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consequences of our results for the fusion reactor design are
discussed in Sec. VII.

II. DEFINING THE REACTOR REGIME

A. Constraints on the reactor design

A wave-driven rotating torus has fundamentally differ-
ent drives and sources of free energy compared to a tokamak,
giving rise to different constraints on the system. In this sec-
tion, we outline these constraints.

The first constraint arises from the fact that an optimal
WDRT should be able to almost directly convert a particle
birth energy into radial potential energy. Although it is in
theory possible to confine the plasma via an electric field
pointing in either direction, an inward-pointing field is far
more attractive, since fast ions will be cooled as they leave
the device, converting their kinetic energy into E!B rota-
tion. Thus, a particles should lose most of their !a " 3:5
MeV birth energy via direct conversion as they leave the
plasma, i.e.,

!a " 2eEra; (1)

where Er is the (minor) radial electric field, e is the elemen-
tary charge, and a is the minor radius. The coordinate sys-
tems used throughout this paper are presented in Fig. 1.

It is also desirable to have sources of free energy in the
plasma-sustained fields to be small compared to a conven-
tional tokamak; this is one of the main advantages of the
WDRT. For the magnetic field, this is accomplished via the
condition bp # 1, where

bp ¼

ð
Pda

l0I2=8p
(2)

is the ratio between the thermal energy and the pressure in
the poloidal magnetic field.

In addition to the poloidal magnetic field, there is also a
large radial electric field, which gives rise to two additional
sources of free energy, from the electric field itself and from
the plasma rotation. Both these are accounted for in the
dielectric tensor, so that the energy, and so, the “electric b”
is given by

bE %
hPi

!0h!rrE2
r i=2

: (3)

If bE # 1, we will also ensure that the hoop force from the
electric field pressure is negligible compared to the thermal
plasma pressure.

Now because r̂?b̂, the dielectric tensor component !rr is
given by the low-frequency limit of the Stix S term

!rr ¼ S ¼ 1þ c

vA

" #2

; (4)

where c=vA is the ratio of the speed of light to the Alfv!en
(E!B drift) speed. Since we expect the rotation velocity to
be substantially less than the speed of light, most of the
energy is stored in the kinetic energy of the E!B rotation.
In this limit, we can express bE straightforwardly in terms of
the E! B velocity vE!B

bE "
hPi

nimihv2
E!Bi=2

; (5)

¼

X

s

nsmshv2
thsi

nimihv2
E!Bi=2

; (6)

¼ ðZi þ 1Þ 2hniTi
mihniv2

E!Bi
; (7)

where we have used ne ¼ Zini and assumed Ti¼Te. For
hydrogen isotopes,

bE )
2vthi

vE!B

" #2

: (8)

Finally, to have minimal shifting of the magnetic axis,
so that our flux surfaces approximately enclose our assumed
current profile, we want

Bha > Bz: (9)

Our goal will be to combine these constraints with the
requirement of macroscopic force balance.

B. Macroscopic force balance and reactor regime

Macroscopic force balance in a toroidal system requires
that we balance the hoop force that causes the plasma to
expand, given by

FIG. 1. Coordinate systems used throughout this paper. We will often find it
useful to work in the poloidal coordinates R and r, which together implicitly
define h and z up to a sign.
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Fh ¼ 4p
ð

Pda: (10)

If a total current I/ runs toroidally through the plasma,
then this hoop force can be balanced by the addition of a ver-
tical magnetic field

Bz ¼ *
2

ð
Pda

R0I/
: (11)

This result corresponds to the bp !1 limit of the tokamak
vertical field at a large aspect ratio15

Bz ¼ *
l0I

4pR0
log

8R0

a

" #
þ K* 1

2

" #
; (12)

where

K ¼ bp þ
li

2
* 1: (13)

C. Reactor regime

Now that we have related the vertical field to the plasma
current, we are almost in a position to define the reactor
regime. Note that all terms in the estimates which follow are
taken to be positive so that it is only the magnitude of the
terms which matters.

We will start by combining the conditions on rotational
free energy (bE # 1) and marginal a confinement [(Eq. (1)]

vthi #
1

2
vE!B; (14)

# 1

2

Er

B/
; (15)

# 1

2

!a=2ae

B/
: (16)

This can be rearranged to give an expression for the minor
radius

a# a0 ¼
1

4vthi

Va

B/
; (17)

where Va is the voltage corresponding to the easily extract-
able a particle birth energy—say 2 MV. Thus, we see that
there is a fundamentally minimum minor radius if we want
to convert most of the a particle birth energy into electric
potential, without having more rotational than thermal
energy. Taking Ti¼ 10 keV, we have vthi " 106 m/s, and so,
if we take a typical tokamak field of )5 T, we find a0 " 10
cm. Note that bE ) ða=a0Þ2, which means that at a minor
radius of about 30 cm, we would have bE " 10. Thus, quite
small sources of free energy seem to be consistent with rea-
sonable device dimensions.

Now, we must impose our force balance condition. For
simplicity, we will assume a constant current profile. We
start by expressing the magnetic fields in terms of bp, subject

to force balance. For the poloidal magnetic field, this is
straightforward. First, we define

I0 %

ffiffiffiffiffiffiffiffiffiffiffiffiffið
Pda

l0=8p

vuuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p2hPia2

l0

s

(18)

so that when I¼ I0, bp ¼ 1, and in general, bp ¼ ðI0

I Þ
2. Then,

we have, assuming a constant current profile,

Bha ¼
l0I

2pa
¼ l0I0

2pa
b*1=2

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0hPi

bp

s

: (19)

The vertical field is then obtained from the force balance
condition [(Eq. (11)]

Bz "
2
Ð

Pda

R0I
¼ 2pa2hPi

R0I0b
*1=2
p

¼ a

R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0hPibp

2

r
: (20)

Finally, we include our last constraint that Bha > Bz,
which gives

bp < 2
R

a

" #
: (21)

Since we need large bp, this indicates that the favorable reac-
tor regime lies at a large aspect ratio. However, since we
wish to minimize viscous damping of the poloidal rotation,
the large aspect ratio was the regime of interest anyway.

It is instructive to consider the requisite fields for typical
fusion temperatures and densities. First, note that the pres-
sure is given by

P ¼
X

s

nsTs ¼ 1:6! 104
X

s

ns;20Ts;keV; (22)

where ns;20 is the density of species s normalized to 1020 m–3

and Ts;keV is the temperature of species s in keV. If we addi-
tionally assume parabolic profiles n; T ) 1* ðr=aÞ2, then

hPi ¼

ða

0

Pmax 1* r

a

" #2
 !

2prdr

pa2
¼ 1

3
Pmax: (23)

Thus,

hPi ¼ 5:3! 103
X

s

ns;20Ts;keV: (24)

With these assumptions and additionally assuming Ti;keV

¼ Te;keV ¼ TkeV; ne;20 ¼ n20, we can write the fields in SI as

Bha ¼ 0:12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z*1

i þ 1
& '

n20TkeV

bp

s

: (25)

Bz ¼ 0:058
a

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z*1

i þ 1
& '

n20TkeVbp

q
: (26)

For a reactor with a major radius of 10 m and a minor radius
of 30 cm, confining a T¼ 10 keV, ne ¼ 5! 1019 m–3 D-T
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plasma at a bp value of 10, we thus have Bha ¼ 0:12 T and
Bz ¼ 0:017 T.

III. PARTICLE ORBITS

Now that we have a rough picture of how to introduce
macroscopic force balance in a WDRT, we will re-examine
particle trajectories with the consistent poloidal and vertical
fields for force balance. We will assume that there is infinite
conductivity parallel to the magnetic field so that flux surfa-
ces are equipotentials.

Our constants of motion are then

! ¼ 1

2
mv2
? þ

1

2
mv2
k þ qVðUÞ; (27)

l ¼ 1

2

mv2
?
jBj

; (28)

p/ ¼ mRv/ þ qU: (29)

Eliminating the final velocities using the last two equa-
tions and taking vk ¼ jBj=B/v/, we thus have the orbit con-
straint equation

0 ¼ 1

2
m
jBj
jBij
* 1

" #
v2
?i þ

1

2

Ri

R
v2
/i *

q

mR
DU

" #2 jBj2

B2
/

"

*v2
/i

jBij2

B2
/i

#

þ q VðUÞ * VðUiÞð Þ; (30)

where we have defined DU ¼ U* Ui.
Now we make a couple of approximations, based on the

assumption that the particle will not deviate far from the flux
surface. The first consequence of this is that the relative
strength of the poloidal and toroidal fields should not change

dramatically; thus, we take jBij2
B2

/i
" jBj

2

B2
/

.

The second consequence is that we can Taylor expand
the potential around the flux surface, i.e.

VðUÞ * VðUiÞ "
@V

@U
DU: (31)

Here, we assume that DU is not large enough that @V
@U

changes significantly.
Now, we will define a few ratios

R̂i %
Ri

R
; (32)

vM %
jBj
jBij
* 1; (33)

vC % R̂
2

i * 1; (34)

va %
jBij2

B2
/i

: (35)

The first of these terms simply relates the current and initial
major radii; the second involves the mirror force, the third is
a centrifugal term, and the fourth involves the pitch angle of
the magnetic field. It should be noted that

v2
ki ¼ v2

/iva: (36)

The orbit constraint equation can then be written in
terms of these variables

0 ¼ AðDUÞ2 þ BDUþ C; (37)

where

A ¼ q2

2mR2
va; (38)

B ¼ *q
Riv/i

R2
va þ q

@V

@U
; (39)

C ¼ 1

2
mvMv2

?i þ
1

2
mvCvav

2
/i: (40)

The solution is, of course,

DU ¼ * B

2A
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1* 4AC

B2

r !

: (41)

Now, much of the useful physics is contained in

D % 4AC

B2
¼

va vMv2
?i þ vCv2

ki

( )

R
@V

@U
* R̂iv/iva

" #2
: (42)

Typically, this will be small since vM; vC + 1. In this case,
we can Taylor expand to find DU. The exception will be
when the denominator goes to zero with a finite numerator,
in which case we can expect trapped (banana) orbits.

A. Verification of Tokamak trapping

To show that the limit D> 1 corresponds to tokamak
trapping, we will first consider @V

@U ¼ 0, which describes a
large-aspect-ratio tokamak, and show that we recover the
banana orbit condition. We will then extend these results to
large Er in Secs. IV and V.

If we let @V
@U! 0, then we simply have a (non-induc-

tively-driven) tokamak. Then, our condition for particle trap-
ping becomes

1 < D ¼
va vMv2

?i þ vCv2
ki

( )

R̂iv/iva

( )2
¼

vMv2
?i þ vCv2

ki

R̂
2

i vki
; (43)

i.e.,

v2
ki < vMv2

?i ¼
jBj
jBij
* 1

" #
v2
?i: (44)

We can recognize this as the mirror trapping condition.15,16

IV. TRAPPED ORBITS IN WDRT

Once the electric field is added, the denominator of D
contains two terms and the trapping condition becomes (in
part) a resonance condition. The center and width of this res-
onance will determine how much of the particle population
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lives on trapped orbits. However, first, we must have an
explicit form for @V

@U.

A. Field setup

For simplicity, we take Bz constant, and

Bh ¼
R0

R

" #
r

a

" #
Bha; (45)

where R is the major radial coordinate, R0 is the center of the
magnetic axis, r is the minor radial coordinate, and a is the
plasma minor radius at h ¼ p=2. Then, our flux function
U ¼ RA/ is given by

U ¼ 1

2
R2Bz þ

1

2
R0

r2

a
Bha: (46)

As we show in Appendix B, this choice of Bh gives us
concentric flux surfaces centered around

Rv % R0 1þ a

R0

Bz

Bha

" #*1

: (47)

By taking the electric field to be constant at R¼Rv, it is also
found that

@V

@U
¼ *Er

a

R0zvBha

" #
; (48)

where zvðUÞ is the height of the flux surface U at R¼Rv

(Fig. 2).

B. Resonance center for trapped orbits

To better understand the resonance condition, take Bz¼ 0,
so that

U ¼ 1

2
R0

r2

a
Bha: (49)

Then, zv¼ r, and Eq. (48) becomes

@V

@U
¼ *Er

a

rR0Bha
: (50)

Now, the particle will start moving across many flux
surfaces when the denominator of D is 0. Setting the denomi-
nator of Eq. (42) to 0, we have

0 ¼ R̂iv/iva * R
@V

@U
; (51)

¼ R̂iv/iva þ REr
a

rR0Bha
; (52)

¼ R̂iv/iva þ
Er

Bh
; (53)

where in the last line we made use of the definition of Bh.
Now, we multiply the last line by

B/Bh

jBj2 and also recall the

definition of va %
jBij2
B2

/i
. Then, we have

0 ¼ vkPB̂;ĥ þ vE!BPr̂!B̂;ĥ ; (54)

where

vk % R̂ivki (55)

is the parallel velocity consistent with momentum conserva-
tion if the particle remains on its initial flux surface, and

PB̂;ĥ %
Bh

jBj
; (56)

Pr̂!B̂;ĥ %
B/

jBj
(57)

are operators which project the parallel and E!B velocities

onto ĥ, respectively.
Thus, we can see that the particle moves across many

flux surfaces when the rotational transforms due to velocity
along the field line and E!B drift across the field line can-
cel. We can summarize this condition as vh;RT ¼ 0, where

vh;RT % vkPB̂;ĥ þ vE!BPr̂!B̂;ĥ : (58)

It is worth noting that in the case where Er points
inward, which is the case of interest for the WDRT, electrons
which support the plasma current are more likely to be
trapped; thus, there could be an enhanced resistivity even
beyond the normal neoclassical term.

It is worth noting that trapped partical effects are not
necessarily deleterious. For instance, absorption of Alfven
waves by trapped particles has been shown to produce
sheared poloidal rotation,17 which is important in the forma-
tion of transport barriers for accessing the H-mode.

C. Resonance width

The boundaries of the resonance are given by D¼ 1.
The following analysis will become simpler with the follow-
ing normalized definitions:

FIG. 2. Elongation and shift of flux surfaces and associated coordinates at
finite Bz. As Bz increases, the flux surface center Rv shifts inward from the
poloidal origin at R0, and the flux surface elongates vertically. Throughout
this paper, we take the minor radius of the device a to correspond to the
highest vertical extent zv of the outer flux surface. We also define a radial
coordinate rF which is measured from the center of the flux surface rather
than from the center of our toroidal coordinate system.

092513-5 I. E. Ochs and N. J. Fisch Phys. Plasmas 24, 092513 (2017)



P̂ %
Pr̂!B̂;ĥ

PB̂;ĥ
¼ B/

Bh
; (59)

v̂ki %
vki

vE!B
; (60)

v̂?i %
v?i

vE!B
: (61)

Note that vE!B > 0 if Er > 0 and vE!B < 0 if Er < 0. In gen-
eral, we will also have P̂ # 1.

In these new variables, our resonance boundaries are
given by

D ¼
vCv̂2

ki þ vMv̂2
?i

ðv̂kiR̂i þ P̂Þ2
¼ 1: (62)

When we solve this for v̂ki, we find

v̂ki ¼ *R̂iP̂6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vCP̂

2 þ vMv̂2
?i

q
: (63)

Thus, the trapping region is defined by a hyperbola in veloc-
ity space

v̂ki þ R̂iP̂
( )2

* vMv̂2
?i < vCP̂

2
: (64)

Interestingly, a similarly shaped trapping region was cal-
culated for impurities in a toroidally rotating plasma,
where it resulted from the inclusion of the Coriolis
force.18

Now, our relatively small poloidal field ensures P̂ # 1,
while vE!B is some large fraction of the ion thermal velocity.
Our resonant trapped velocity will thus be much larger than
the ion thermal velocity, making ion trapping rare. Thus, we
only expect a significant number of trapped orbits for elec-
trons in the WDRT, as well as potentially for fusion-born a
particles.

D. Banana width

To find the banana width, let the discriminant in Eq.
(41) be 0. Then

DU ¼ * B

2A
; (65)

¼ mR

q

B/

Bh

" #
vh;RT : (66)

Now, we make use of the approximation

DU ¼ RBhK (67)

which gives

K ¼ 1

Xp
P̂ vh;RT ; (68)

where Xp ¼ qBh=m.
The “fattest banana” is generally the most marginally

trapped orbit, given from inequality (64) by

v2
h;RT " vMv2

?iP
2
B̂;ĥ
þ vCv2

E!BP2
r̂!B̂;ĥ

: (69)

So, substituting this in above, we get

K ¼ ffiffiffiffiffiffi
vM
p v?

Xp

" #
Pr̂!B̂;ĥ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ vC

vM

P̂
2

v̂2
?i

vuut : (70)

The first part, in parentheses, is the conventional banana
width. In general, for electrons, we will have vthe # vE!B,
and so, the denominator of the second term in the square root
should be large–on the order of an electron-ion mass ratio.
However, the numerator is determined by P̂ ¼ B/=Bh # 1,
and so, it is easy to envision this being the dominant term. In
that case, the banana scaling will be given by (assuming
Pr̂!B̂;ĥ " 1)

K ¼ ffiffiffiffiffi
vC
p vE!B

Xp

B/

Bh
¼ ffiffiffiffiffi

vC
p 1

Xp

Er

Bh
: (71)

Assuming vC " vM means that the main difference is
that we replace the thermal velocity with

vE!Bh %
Er

Bh
(72)

when calculating the banana widths.

E. Large aspect ratio

For the purpose of clarity and easy comparison to the
transport literature, it is instructive to take the large-aspect
ratio limit of our results. In a large-aspect-ratio WDRT, we
will have

vM )
Rþ a

R* a
* 1 " 2e; (73)

vC )
ðRþ aÞ2

ðR* aÞ2
* 1 " 4e: (74)

Here, we have adopted the convention from the neoclassical
transport literature, denoting the inverse aspect ratio
e % a=R.

Our trapping region is given at a large aspect ratio from
Eq. (64) by

v̂ki þ P̂
( )2

* 2!v̂2
?i < 4!P̂

2
: (75)

Or, more dimensionally

vki þ vE!B
B/

Bh

" #2

< 2!v2
?i 1þ 2nð Þ; (76)

where

n % vE!B

v?i

" #2 B/

Bh

" #2

(77)

is the critical parameter which determines the degree of devi-
ation from tokamak-type trapping. In a WDRT, n# 1.
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Thus, compared to the tokamak case, the trapping region
both shifts and expands, with the degree of each determined
by both the ratio of vE!B to vthe, and Bh to B/. Unlike in toka-
mak banana transport, the toroidal field plays a role in deter-
mining the shape of the trapping region.

In its two limits

vki þ vE!B
B/

Bh

" #2

<

2!v2
?i if n+ 1

4!v2
E!B

B/

Bh

" #2

if n# 1:

8
><

>:
(78)

Once the trapping region is known, the fattest banana
width is given by

K ¼
ffiffiffiffiffi
2!
p v?

Xp

" #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2
P̂

2

v̂2
?i

vuut : (79)

Or, more dimensionally

K ¼
ffiffiffiffiffi
2!
p v?

Xp

" # ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2n

p
: (80)

In its two limits

K ¼

ffiffiffiffiffi
2!
p v?

Xp
if n+ 1

ffiffiffiffiffi
4!
p 1

Xp

Er

Bh
if n# 1:

8
>><

>>:
(81)

In contrast to the shape of the trapping region [Eq. (76)], the
banana width is always independent of the toroidal field.

For the values in Table I, the electron fattest banana
width is on the order of 1 mm. Thus, assuming banana diffu-
sion, trapping should not lead to any sudden loss of confine-
ment due to instantaneously lost orbits although it could lead
to enhanced conductivity perpendicular to the magnetic
field.

V. SIMULATIONS AND FINITE BZ

To test our analytical predictions, we performed single-
particle full-orbit simulations for the device parameters shown
in Table I using either a non-relativistic Boris19 or relativistic
Vay20 particle pusher and the field configuration described in
Appendix B. Particles were initialized on the low-field side of
the outer flux surface at z ¼ 0, as described in Appendix B 1.
To map the trapped region in phase space, the initial velocity
was swept across a range of initial values v?i and vki in the
approximate E!B-drifting rest frame; i.e., the particle with
ðv?i ¼ 0; vki ¼ 0Þ was initialized at vi ¼ E!B

B2 .
Simulation results for the trapping region for Bz¼ 0 are

shown in Fig. 3 for both particle pushers. The trapping
region is well described by the analysis and is largely unaf-
fected when relativistic effects are included.

When we add a finite Bz that ensures macroscopic force
balance (0.021 T for the parameters in Table I), the trapping
region is largely unaffected, but the banana orbits get slightly
wider, especially at low v?i (Figs. 4 and 5). Thus, macro-
scopic force balance in a WDRT with equipotential flux sur-
faces seems to be fairly achievable from a single-particle
perspective.

Finally, an example of a simulated trapped electron orbit
is shown in Fig. 6. Apart from the finite banana width at negli-
gible initial v?i, the orbits are clearly similar to the banana-
trapped orbits in a tokamak, of which they are a generalization.

VI. NON-EQUIPOTENTIAL FLUX SURFACES

The extremely high q (low Bh) anticipated for the
WDRT means that an electron must traverse a large distance
along a field line in order to traverse a short distance poloi-
dally. Thus, it is not trivially guaranteed that the flux

TABLE I. Sample reactor parameters for a force-balancing WDRT scenario,

confining a T¼ 10 keV, ne ¼ 5! 1019 m–3 D-T plasma.

Parameter Value

a 0.3 m

R0 10 m

e 0.03

Er 3! 106 V/m

B/ 5.0 T

Bh 0.1 T

Bz 0.02 T

vE!B 6! 105 m/s

vthi 1! 106 m/s

vthe 4! 107 m/s

bp 10

bE 10

FIG. 3. Simulated trapped orbit region
(gray) using non-relativistic Boris (a)
relativistic Vay and (b) particle pushers.
Analytical results from Eq. (64) are
given in black.
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surfaces will be equipotential, and it is worth considering the
consequences of non-equipotential flux surfaces.

As a simple model for this situation, consider that we
have the same flux function U as in Eq. (46), but now we
have an electric field E ¼ Err̂ that points purely radially.
Taylor expanding Eq. (47), we see that this will offset the
flux surface center from the electric center by a distance

Dcen % Rv * R0 " *a
Bz

Bha
: (82)

If we carry out the same constants of motion analysis for this
situation, then we find that wide, trapped orbits will result
even for cold particles unless (in the limit Bha # Bz)

jErj > 4
e

m
BzBhaa: (83)

In contrast to the equipotential flux surface case, the result-
ing trapped orbits can occur on either the high- or low-field
side of the device. For a derivation of this result from the
constants of motion, see Appendix C.

The trapping condition can be understood heuristically
as follows. For cold electrons, the rotational transform is pro-
vided entirely by the E!B rotation, and so, an electron at
radius a traverses from the high-field to low-field side of the
device on a timescale

sE!B ¼
B/

Er
pa: (84)

As the electron traverses this orbit, there is a component of Er

parallel to the magnetic field due to Bz. The force along the
field line due to the radial E field when Bz;Bha + B/ is thus

Fk ¼ *eEr
Bz

B/
sin h: (85)

Over the half orbit, the electron thus gains a velocity parallel
to the magnetic field

vk ¼
Fk
m

sE!B: (86)

If the projection of this velocity onto ĥ, i.e., vh ¼ vk
Bh
B/

, is
opposite in sign and larger in magnitude than the E!B
velocity, then the electron will reverse the direction, becom-
ing trapped. The rotational transforms will oppose, for
instance, for electrons when Er < 0 and Bz;Bha > 0. Then,
the condition for trapping is

Er

B/
< vh ¼

Fk
m

sE!B
Bh

B/
: (87)

Multiplying by B/ and taking hsin hi ¼ 2
p, we have

Er < 2
e

m
BzBha (88)

which is within a factor of two of our exact condition from
COM.

We can rewrite Eq. (83) in terms of the flux surface shift

jErj > 4
e

m
B2

hajDcenj: (89)

FIG. 4. Fattest full banana width across vki as a function of v?i using non-
relativistic Boris and relativistic Vay particle pushers. Analytical results
from Eq. (80) are given in black. As v becomes significant compared to the
speed of light, the trapped orbits grow wider, consistent with the increasing
relativistic mass.

FIG. 5. Fattest full banana width across vki as a function of v?i without a
vertical magnetic field and with a macroscopic force-balancing vertical field
of 0.021 T, using the Vay relativistic pusher. Analytical results from Eq.
(80) are given in black. The vertical field does not have much effect on the
banana width although it has a moderate impact at low v?i in increasing the
banana width.

FIG. 6. Poloidal projection of the trapped electron orbit for configuration
with finite Bz. This electron was initialized with vki ¼ 4:6! 107 m/s and
v?i ¼ 0 at r¼ a on the outboard side, resulting in a banana width of 1.8 mm.
The inward shift of the flux surface center by about 6 cm due to Bz (see
Appendix B) is visible in the center of the orbit.
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Thus, we see that the condition for passing cold-electron
orbits introduces a maximum allowable deviation from equi-
potential flux surfaces.

VII. CONCLUSION

We demonstrated via a constants-of-motion approach
that fusion-pressure electrons and ions can be well confined
in a macroscopically force-balancing wave-driven rotating
torus (WDRT) configuration. By so doing, we identified sev-
eral possible sources of difficulty for the WDRT, which
require further research.

Most of these potential problems arise from the fact that
the banana-trapping region is not symmetric in phase space
along vk. The first consequence of this asymmetry is the
trapping of only electrons but not of ions. This differential
confinement could have large effects on the perpendicular
conductivity, which must be low to sustain the MV-scale
potentials needed for the efficient direct conversion of a-par-
ticle energy.

The second consequence of the asymmetry is the prefer-
ential trapping of electrons which support the plasma current,
thus potentially increasing the resistivity in excess of the
standard neoclassical increase due to symmetric electron
trapping. This effect could lower the current drive efficiency.

Finally, we showed that the deviation of flux surfaces
from equipotential surfaces could lead to large-scale trapping
of the electron population, emphasizing the importance of
having large parallel conductivity despite the low perpendic-
ular conductivity.

By confirming that a small toroidal current can lead to a
force-balanced plasma, without destroying the WDRT con-
finement, our results demonstrate the potential promise of
the WDRT as a fusion concept with far lower free energy
than a tokamak. However, the interesting trapped orbit
effects are uncovered as a result also point to the important
research avenues ahead in evaluating their feasibility.
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APPENDIX A: FORCE BALANCE WITH AN ELECTRIC
FIELD

It could also be possible to balance the hoop force with
an electric field, given the plasma space charge necessary to
produce the radial electric field. The size of this space charge
can be approximated from Gauss’ law, by assuming a cylin-
drical plasma

!0

ð
E , dA ¼

ð
qdV ¼ Qenc: (A1)

Solving for a linear charge density k, this becomes

k ¼ 2pr!0Er: (A2)

We now need to produce a force per unit length equal to the
force provided by the vertical field above. Thus,

F ¼ ERk ¼ IBv ¼ *
2

ð
Pda

R0
(A3)

which, substituting in k, gives

ER ¼ *

ð
Pda

prR0!0Er
¼ 3:6! 1010

ð
Pda

rR0Er
: (A4)

Now, substituting in hPi ¼ 5! 103n20TkeV, then

ER ¼ 5:6! 1014 an20TkeV

R0Er
: (A5)

Combining this with our constraint on marginal alpha con-
finement [Eq. (1)]

ER ¼ 5:6! 108 a

R0
n20TkeVa; (A6)

where all lengths are measured in meters. Now, in order for
ER + Er (a condition for closed poloidal orbits), we can see
that we will have to push to a very large aspect ratio and
small a; i.e., for a¼ 0.3, we would need R0 # 100 m.

This requirement for an extremely large aspect ratio
becomes clear when we note that that Eq. (A4) can be written as

ER

Er
¼ 2a

R0
!rr

hPi
!0!rrE2

r=2
" 2a

R0

c

vA

" #2

bE; (A7)

where bE is defined in Eq. (3) as the ratio of the thermal to
electric field energy. Thus, with the rotational energy small
compared to the thermal energy (one of the weaker of our
free energy constraints), we must go to extremely large
aspect ratio. This difficulty makes electrostatic force balance
an unattractive option.

APPENDIX B: ELECTRIC FIELD FOR EQUIPOTENTIAL
FLUX SURFACES

For Bh ¼ BhaðraÞ
p R0

R , our vector potential is given by

A/ðR; rÞ ¼
1

2
RBz þ

1

pþ 1

R0

R

rpþ1

ap
Bha; (B1)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR* R0Þ2 þ z2

q
. Thus, our flux U ¼ RA/ is

given by

U ¼ 1

2
R2Bz þ

1

pþ 1
R0

rpþ1

ap
Bha: (B2)

The gradient of this, along which the poloidal projection
of the electric field will point, is given by

092513-9 I. E. Ochs and N. J. Fisch Phys. Plasmas 24, 092513 (2017)



rU ¼ RBz þ R0 ðR* R0Þ2 þ z2
( )p*1

2 R* R0

ap
Bha

* +
R̂

þ R0 ðR* R0Þ2 þ z2
( )p*1

2 z

ap
Bha

* +
ẑ: (B3)

For p¼ 1, corresponding to constant current density and
linearly increasing Bh,

U ¼ 1

2
R2Bz þ

1

2
R0
ðR* R0Þ2 þ z2

a

" #
Bha; (B4)

rU ¼ RBz þ R0
R* R0

a

" #
Bha

* +
R̂ þ R0

z

a

" #
Bha

* +
ẑ: (B5)

Note that as Bz ! 0, the gradient points purely along r̂
¼ cos hR̂ þ sin hẑ.

Now, in general, the constant-flux surfaces will be elon-
gated along ẑ and compressed along R̂. They will also no longer
be centered around R¼R0. Instead, we can easily identify the
point at which rU points purely vertically from Eq. (B5).
Setting the R̂ term to 0, we find that this occurs at R¼Rv, where

Rv ¼ R0 1þ a

R0

Bz

Bha

" #*1

: (B6)

Now, we choose to define our E field profile along this
line where rU is vertical. We will call the field along this
line ErðzvðUÞÞ, where zvðUÞ is the unique positive value of z
where a given flux surface U intersects this line. We can find
zvðUÞ simply by plugging R¼Rv into Eq. (B4) and solving
for zv. This gives

zv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a

R0Bha
U* 1

2
R2

vBz

" #
* Rv * R0ð Þ2

s

: (B7)

Now

E ¼ *rV ¼ * @V

@U
rU: (B8)

At R¼Rv, rU k ẑ, and this becomes

ErðzvÞ ¼ *
@V

@U
R0

zv

a

" #
Bha

* +
: (B9)

Inverting to find @V
@U

@V

@U
¼ *Er

a

R0zvBha

" #
: (B10)

Substituting this back into Eq. (B8) and also substituting
in our definition of rU from Eq. (B5), we find

E ¼ ErðzvðUÞÞ
R

R0

a

zvðUÞ
Bz

Bha
þ ðR* R0Þ

zvðUÞ

* +
R̂ þ z

zvðUÞ

* +
ẑ

( )
:

(B11)

1. Outer flux surface

We define our outer flux surface by zv¼ a. However,
when calculating banana widths, we generally start by con-
sidering a particle at z¼ 0. For small a

R0

Bz
Bha

, the minor radius
as measured from the flux axis rF ¼ R* Rv at z¼ 0 is

rF ¼
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a

R0

Bz

Bha

r : (B12)

Initializing particles at this radius allow us to compare results
between different Bz values.

APPENDIX C: COLD PARTICLE TRAPPING FOR NON-
EQUIPOTENTIAL FLUX SURFACES

The conserved quantities along the particle orbit are

! ¼ 1

2
mðv2

? þ v2
kÞ þ qV; (C1)

l ¼ 1

2
m

v2
?
jBj

; (C2)

p/ ¼ mRv/ þ qRA/: (C3)

For the following discussion, we will assume that Er is con-
stant and Bh ¼ Bha

r
a

& '
at R¼R0.

We first note that

v/ ¼ vk
B/ðRÞ
jBj

" #
(C4)

and of course

jBj ¼ B2
/ þ B2

z þ B2
R

( )1=2
; (C5)

¼ B/ðRÞ2þB2
z þBhðR;rÞ2*2BzBhðr;RÞcosh

( )1=2

; (C6)

where

B/ðRÞ ¼
R0

R
B/0; (C7)

BhðR; rÞ ¼
R0

R

r

a

" #
Bha; (C8)

cos h ¼ R* R0

r
: (C9)

Now, our potential is given by

VðrÞ ¼ *rEr: (C10)

Our vector potential is given by

A/ðR; rÞ ¼
1

2
RBz þ

1

2

R0

R

r2

a
Bha: (C11)

Our orbit constraint equation is then given by

0 ¼ 1

2
m

p/ * qRA/ðR; rÞ
mR

" #2 jBðR; rÞj
B/0

R

R0

 !2

þ ljBðR; rÞjþ qVðrÞ * !; (C12)

where the COMs are calculated from the initial conditions.
With our COMs in hand, we now turn to the question of

electron trapping. Consider Eq. (C12) with v?i; vki ¼ 0. Also,
take jBj " B/; R0=R " 1. Then, substituting Eqs. (C10) and
(C11), we find
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0 ¼ 1

2

q2

m

1

2

Bz

R
R2

i * R2
& '

þ 1

2

Bha

a
r2

i * r2
& '" #2

* qErðr * riÞ:

(C13)

Now, take

D % R* Ri; (C14)

"R % 1

2
Rþ Rið Þ; (C15)

d % r * ri; (C16)

"r % 1

2
r þ rið Þ: (C17)

Then, by noting R2
i * R2 ¼ ðRi þ RÞðRi * RÞ ¼ *2 "RD, we

can rewrite the above equation as

0 ¼ 1

2

q2

m
Bz

"R

R
Dþ Bha

"r

a
d

" #2

* qErd; (C18)

" 1

2

q

m
BzDþ Bha

"r

a
d

" #2

* Erd: (C19)

Now, we will consider the case where z¼ 0 so that
R ¼ R06r. For an untrapped orbit which starts at Ri < R0,
we must have R > R0 at the next midplane crossing, and so

D ¼ R* Ri ¼ ðR0 þ rÞ * ðR0 * riÞ ¼ r þ ri ¼ 2"r : (C20)

Substituting this into Eq. (C19) and expanding the square,
we find

0¼4B2
z "r2þ 4BzBha

"r2

a

" #
*2m

q
Er

 !

dþB2
ha

"r

a

" #2

d2: (C21)

For the moment, assume d+ ri so that "r " ri. Then, we
have a simple quadratic equation, the solution to which is

d ¼ * B

2A
1*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1* 4AC

B2

r !

; (C22)

where

A ¼ B2
ha

ri

a

" #2

; (C23)

B ¼ 4BzBha
r2

i

a

" #
* 2m

q
Er; (C24)

C ¼ 4B2
z r2

i : (C25)

Because 4AC=B2 > 0 always, the magnitude of d will go as
C=B - aBz=Bha. So, as long as Bz=Bha + ri=a, then d+ ri,
and everything is consistent.

Because A and C are strictly positive, this equation will
only have a real solution when 4AC=B2 < 1, i.e., when

4BzBha
"r2

a

" #
* 2m

q
Er

 !2

> 4BzBha
"r2

a

" #2

: (C26)

Now, force balance requires BzBha > 0. Thus, we can see
that when qEr > 0, as is the case for electrons in a negatively
biased WDRT, the LHS is strictly smaller until the second
term is twice as large as the first term. The minimum electric
field to satisfy this condition is

jErj > 4
jqj
m

BzBha
r2

i

a
: (C27)

This is our first passing orbit condition.
To find the second condition, consider the limit Bha ! 0.

Now, we can no longer take d+ ri; instead, "r ¼ d=2þ ri.
Thus,

dEr "
2q

m
B2

z "r2; (C28)

" 2q

m
B2

z d2=4þ dri þ r2
i

( )
: (C29)

So

0 ¼ r2
i þ ri *

m

2qB2
z

Er

" #
dþ 1

4
d2: (C30)

Similarly to before, the answer is simply quadratic, given by

d ¼ * B

2A
1*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1* 4AC

B2

r !

; (C31)

where now

A ¼ 1=4; (C32)

B ¼ ri *
m

2qB2
z

Er; (C33)

C ¼ r2
i : (C34)

So, for a real solution to exist, we must have 4AC=B2 < 0,
i.e., (for qEr > 0)

jErj > 4
jqj
m

B2
z ri: (C35)

Thus, our two conditions on Er are

jErj >
4
jqj
m

BzBha
r2

i

a
if Bz=Bha + ri=a

4
jqj
m

B2
z ri if Bz=Bha # ri=a:

8
>><

>>:
(C36)

To test these predictions, we ran single-particle simula-
tions (Boris scheme) for fixed values of all parameters
besides Er; if the orbit was trapped, jErj was increased, while
if it was untrapped, it was decreased. Once both trapped and
untrapped orbits were identified, this process became a
binary search for the minimum jErj required for orbit
untrapping.

The comparison of these simulations with Eq. (C36) is
shown in Fig. 7. Each theoretical prediction agrees well with
the simulation in its regime of applicability.
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FIG. 7. Comparison of theoretical minimum jErj for an untrapped orbit with
the minimum magnitude required in single-particle simulations. Magenta tri-
angles represent Bz=Bha < ri=a, while cyan circles represent Bz=Bha > ri=a.
The theoretical value in each regime of Eq. (C36) accurately describes the
trapping condition.
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